Druggability and Genetic Variability of the ATPase Site and Central Channel of SARS-CoV-2 nsp13 Helicase Across Coronaviruses and SARS-CoV-2 Samples – Post 23

One of the important enzymes in the replication cycle of the SARS-CoV-2 virus is the helicase, which is also known as non-structural protein 13 (nsp13). During the viral life cycle, the holo-RNA-dependent RNA polymerase, also known as nsp12, is thought to coordinate with several additional factors, including the nsp13 helicase (Snijder et al., 2016; Sola Read More …

Druggability and Genetic Variability of the ADP-bound Pocket of SARS-CoV-2 RNA-dependent RNA polymerase NiRAN domain Across Coronaviruses and SARS-CoV-2 Samples – Post 22

The RNA-dependent RNA-polymerase (RdRp) also known as non-structural protein 12 (nsp12) is the target of antiviral agent remdesivir. Nsp12 has an important role in viral genome replication and transcription. (Chen et al., 2020)  Chen et al. identified a new pocket on the N-terminal extension of nsp12 occupied by ADP-Mg2+ after solving the structure of the helicase-polymerase complex. This ADP-bound pocket is on the N-terminal nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain which Read More …

Production and purification of Ectodomain of SARS-CoV-2 Spike (S) protein

Production and purification of Ectodomain of SARS-CoV-2 Spike (S) protein Two different expression plasmids for prefusion S ectodomain residues 1−1208 of 2019-nCoV S (GenBank: MN908947) with proline substitutions (2P) at residues 986 and 987(1) and with six proline substitutions (HexaPro (at residues 817, 892, 899, 942, 986 and 987 (2), a “GSAS” substitution at the Read More …

Genetic Variability at An Allosteric site of SARS-CoV-2 RNA-dependent RNA polymerase Across Coronaviruses and SARS-CoV-2 Samples – Post 21

SARS-CoV-2 is a positive-strand RNA virus, depending on its multi-subunit machinery to replicate its RNA. This machinery is known as RNA-dependent RNA polymerase (RdRp). The catalytic subunit of RdRp, which is the core component of this machinery, is called nsp12. Nsp12 has little catalytic activity on its own and relies on accessory subunits to have Read More …

Production and purification of recombinant SARS COV-2 RBDSD1-Fc protein

Production and purification of recombinant SARS COV-2 RBDSD1-Fc protein from a transiently transfected EXPI293 mammalian cells. Expression plasmid for CoV-9-RBDSD1, residues of RBD R319−S591 with a C-terminal HRV3C protease cleavage site, a monomeric Fc tag and an 8XHisTag was generously gifted by Dr. McLellan’s lab (1). Secreted proteins were purified from a suspension culture cell Read More …

Production and purifications of the SARS-CoV-2 related proteins from the transiently transfected mammalian cells

Over the last few months, we have all become familiar with the COVID-19 global pandemic. The coronavirus is “decorated” with the Spike (S) protein, one of the 25 proteins of SARS-CoV-2 that are encoded in the viral genome. The infection starts with the attachment of the virus to the cell membrane to enter host cells. Read More …

Genetic Variability at the Remdesivir-binding Pocket of SARS-CoV-2 RNA-dependent RNA polymerase Across Coronaviruses and SARS-CoV-2 Samples – Post 20

In my previous post 19, I showed how we assessed the druggability of the remdesivir-binding site of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and determined the residues lining that site. In this post, we analyze the genetic diversity of RdRp catalytic site across Alpha- and Betacoronavirus entries from UniProt and among SARS-CoV-2 samples. In the context Read More …

The next target: SARS-CoV-2 RNA-dependent RNA polymerase and Its Druggability – Post 19

Previously we reported our analysis on the structural diversity of binding pockets found on the SARS-CoV-2 main protease, methyltransferase, and papain-like protease, macrodomain. We then shifted our focus on the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). SARS-CoV-2 is a positive-strand RNA virus, depending on its multi-subunit machinery to replicate its RNA. The catalytic subunit of RdRp Read More …

Calculating the change in Gibbs free energy (ddGbind) of an improved alpha-ketoamide inhibitor binding associated with genetic variations of SARS-CoV-2 main protease – post18

Since we posted our analysis of genetic variation of SARS-CoV-2 main protease (MPro) with inhibitor N3 (PDB: 7bqy), there have been other inhibitors co-crystallized with the MPro (PDB: 6lze, PDB: 6m0k, and PDB: 6y2f). In my last post, I talked about the two inhibitors, 11a and 11b (PDB: 6lze, PDB: 6m0k) and in today’s post, Read More …

Structure and X-ray Fragment screening of SARS-Cov-2 helicase (Nsp13)

My name is Joseph Newman and I have been working in Lab of Opher Gileadi at SGC Oxford since 2013 mainly on targeting DNA repair factors as synthetic lethal targets for early stage development of new cancer therapeutics. Like many scientists my normal laboratory based research activities were disrupted by the lockdown, and when Opher Read More …